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PREFACE

This publication contains the proceedings of a workshop conducted at the NASA
Langley Research Center on the technology for controlling large space structures cur-
rently being conceived for space applications by the year 2000. The purpose of the
program was to address the fundamental technology deficiencies that were identified
in several studies on large space systems (LSS) conducted by NASA in the last several
years. Tyg_gggbhggggig§"bgygﬂpgigteqﬂgut‘the need for distributed control technology
and technology for adaptive surface control. During the course of the workshop, addi-
tional technological deficiencies were uncovered, the most notable being the lack of
experience in managing large numbers of control system components and maintaining
system level functions in the presence of failed actuator or sensor components. At
present, these issues are of primary concern because there is little or no experience
with them in the space program but the missions studies are critically dependent upon
these technology items for their mission economy oOr success.

A basic research program has been assembled at NASA Langley Research Center to
address the technology deficiencies discussed previously. It consists of an in-house
effort, university grants, and industry contracts. The staffs of the respective par-
ticipants were assembled at the workshop to review the current state of research in
the control technology for large structural systems and to plan the efforts that would
be pursued by their respective organizations. This document contains the more impor -
tant slides that were used by each participant with a word description where required
for clarity. It is our intention to review the progress of the activity and have
another workshop to plan the program for the following year at the close of the 1981
fiscal year (about October 1981).

Use of trade names or names of manufacturers in this report does not consti-
tute an official endorsement of such products or manufacturers, either expressed or
implied, by the National Aeronautics and Space Administration.

Raymond C. Montgomery, Cochairman H59l
Garnett C. Horner, Cochairman
E. Burton Lightner, Coordinator
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LANGLEY RESFARCH CENTER FLEXIBLE BEAM EXPERIMENT

RaYmond C. Montgomery
NASA Langley Research Center
Hampton, VA '

Workshop on the Structural Dynamics and Control
of Large Space Structures
October 30-31, 1980



LaRC FLEXIBLE BEAM EXPERIMENT

To verify some of the optimization results and other control algorithms,
a flexible beam experiment has been initiated at LaRC. In figure 1, the
flexible beam experiment consists of a 3.66 m (12 ft) long aluminum beam with
a 4.76 mm (3.16 in.) by 15 cm (6 in.) cross section. The beam is suspended by
two small flexible cables so that free-free end conditions are approximatea.
Located in front of the beam are four electromagnetic shakers (actuators)
which can be repositioned along the beam by sliding them along the platform
which supports them. The console on the left contains the power amplifiers

for the shakers.

Figure 1



LaRC FLEXIBLE BEAM EXPERIMENT

(Continued)

Figure 2 shows another picture of the experimental setup. On one side
of the beam the four shakers are located and on the other side of the beam

there are nine noncontacting displacement probes.
tied in with the CDC Cyber 175 computer, real-time
For example, the output of the displacement probes
computer. Using state estimation, the velocity at
be approximated. Knowing the damping rate or gain
gram and the velocity, the desired force output of
lated.

With the experiment being
calculations may be made.
can be made available to the
the shaker locations can
from the optimization pro-
the shakers can be calcu-






STRUCTURAL DYNAMICS RESEARCH

IN ACTUATOR/SENSOR LOCATIONS

G. C. Horner
NASA Langley Research Center
Hampton, VA

Workshop on the Structural Dynamics and Control
of Large Space Structures
October 30-31, 1980



OPTIMUM DAMPER LOCATIONS FOR A FREE-FREE BEAM

The objectives of this research are to identify optimum locations for
sensors and actuators on large space structures. If it is assumed that large
platforms and antennae will have many potential actuator/sensor locations, we
may logically ask "Where should actuators and sensors be placed?" Not only
should the optimum placement be determined, but also the dynamic characteristics
of actuators may also be necessary.

OBJECTIVES

o DEVELOP ALGORITHMS TO OPTIMALLY LOCATE AND DESIGN DAMPERS FOR LARGE
SPACE STRUCTURES

o DETERMINE REQUIREMENTS FOR DISTRIBUTED SEMSING AND ACTUATION (AS
OPPOSED TO COLOCATED SENSOR AND ACTUATOR) IN CONTROL OF STRUCTURAL
SYSTEMS

APPROACH

o USE MATHEMATICAL PROGRAMMING TO SOLVE FOR OPTIMUM DAMPING RATE AND
LLOCATION,

o CONSIDER ACTUATOR DYNAMICS TO SOLVE FOR OPTIMUM ACTUATOR MASS.

Figure 1



DAMPING CHARACTERISTICS OF A FREE-FREE BEAM

To get an understanding of the behavior of large space structures, we
first look at the damping characteristics of a uniform beam. A dash pot is
located at one end of a free-free beam. This is an ideal dash pot which is
characterized by a damping rate, C, and no other dynamic characteristics. 1In
figure 2 it is seen that for small values of C (<.005), the damping ratio, ¢ ,
and damping rate are linearily related. This is denoted as perturbation
theory. As the damping rate is increased, the damping ratio reaches a peak
value and then decreases. The peak value of the damping ratio is about 0.2
for the first flexible mode. Suppose a design problem were stated which re-
quired that the first mode have a damping ratio greater than 0.2. This
requirement may be a result of mission performance specifications. To achieve
more than the 0.2 damping ratio in the first mode, one or more dash pots are
required. Since the design problem being addressed here is one in which the
damping ratio is prescribed for each mode to be damped, the damping rate of
the dash pots is determined.
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— — —— PERTURBATION THEORY
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DAMP ING CHARACTERISTICS OF A CLAMPED-FREE BEAM

The results are essentially the same as for the free-free beam in
figure 2. ' ’ ' '
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NONLINEAR OPTIMIZATION PROBLEM

A design problem is posed which states that given the prescribed modal
damping ratio for N modes, what are the optimum damping locations and sizes?
The design problem is now cast as a nonlinear optimization problem. Since it
is not known where the dash pots should be located on a structure, the initial
step is to put a dash pot at every location of the beam. The objective function
is to minimize the total dissipative effort. The constraints are that the
actual computed modal damping ratios must be greater than of equal to the
prescribed value. Another constraint is that the damping rate must be
positive. This guarantees stability. - '

0 FOR PRESCRIBED MODAL DAMPING RATIO IN N MODES, WHAT ARE THE BEST DAMPING SIZES
AND LOCATIONS?

0 OBJECTIVE
MINIMIZE TOTAL DISSIPATION Min 2 C;
R 1

TLLTILIT T

;7 /7 7 7 7 7 7 777 ] 777

-

0 CONSTRAINTS

(COMPUTED MODAL DAMPING RATIO); > (DESIGN VALUE);
C; MUST BE POSITIVE

Figure 4
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OPTIMUM DAMPING LOCATIONS AND SIZES FOR A FREE-FREE BEAM |

Some results are presented in figure 5 for a free~free beam. The design
problem consisted of prescribing a modal damping ratio of 0.5 in N modes. The
results are shown for N =1, 2, 3, 4. The results are also split between
symmetric solutions and ndnsymmetric'solutigns; The symmetric solutions are
obtained by minimizing the total dissipation while imposing symmetry in the solu-
tion. The horizontal lines represent the length of the beam. The vertical ‘
lines are proportional to the‘magnitude‘of the damping rate at the location ,
shown on the beam axis. The nonsymmetric solution is obtéined by removing the
symmetry requirement and the smallest damper location. Thus, nonsymmetric solu-
tions will have no more than one fewer dampers than the symmetric case. In
some cases the objective function for the nonsymmetric solution is less than
that for the symmetric case.

(MODAL DAMPING RATIO), > .5 i=1, .., N

N=4
SYMMETRIC o © 77 NONSYMMETRIC

Figure 5



OPTIMUM DAMPER LOCATIONS AND SIZE FOR A CLAMPED-FREE BEAM

'~ The results shown in figure 6 are similar to those in figure 5.

(MODAL DAMPING RATIO); > .5 i =1,...,N -

-y ] l
N=t I
N=3%
),
N=2 1
_ 1 4 |
N 1j
Figure 6
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FUTURE RESEARCH

The future research thrusts will involve the addition of actuator dynamics
to the structural dynamic models. This will allow the mass and stiffness as
well as the damping rate of the damper to be design variables. Thus this will

be the actuator design phase.

Next, a 2-dimensional structural model which has a higher modal density
will be developed.

0 NONCOLOCATED SENSORS AND ACTUATORS
0 ADDITION OF ACTUATOR DYNAMICS
0 2-DIMENSIONAL STRUCTURAL MODEL

Figure 7



REDUCED ORDER ADAPTIVE REGULATION
STRATEGIES FOR THE NASA BEAM
CONTROL EXPERIMENT

: C. Richard Johnson, Jr,
‘ Department of Electrical Engineering _
~Virginia Polytechnic Institute and State University
- Blacksburg, VA 24061

Workshop on the Structural Dynamics and Control
Of Large Space Structures
NASA Langley Research Center
Hampton, VA 23665

October 30, 1980
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REASONS FOR ADAPTIVE REGULATION

. Uncertainty in modal frequency (and mode shape)
prespecification

. Inability to perform identification prior to
deployment o EESRER

. Time-variations in SYStem dynamics during operation
(especially construction)

NASA BEAM MODE FREQUENCIES

_
mode continuum|  finite =~ | = W, based on
~analysis | element [T T
(W/Wy) analysis Wi W W
1 1 1.8173 - 1.8107 1,8042
2 2,7565 04,9911 | 5.0094 - | w7
3 5,403 9.7496 19,8205 | 9.7847 -

REASONS FOR MODAL DESCRIPTION

. Decoupled dynamics convert multi-input,

multi-output problem to several

single—input, single-output problems
. Parallel computation for real-time control imblementdtion
. Common form of models of large flexible structures

14




MODAL DESCRIPTION OF FREE-FREE BEAM

y (X,t) = Iy (X1

yi(x;t)‘ = ¢i (x) ‘Pi (t)

" 2

IR i G R A

J

by (X) « [cosh WiX + cos;wix

(cosh Wil - COS'WiI) o _ - ,
- . (sinh WiX + 810 Wix)1
~(sinh wil - §8in wil) ) . _

Note: ¢, dependent on w;

y @ verticdl deflectionv

X horizontal beam point location

t time ' ' '

Vi ith mode deflection

b5 ith mode shape (characteristic function)
¥y ith mode amplitude

W ith mode natural frequency

ith mode forcing function
fj(xj, +): Jjth point actuator force applied at X
1 : beam length |
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QUESTIONS

How do currently available single -input, single-output
adaptive control schemes behave when applied as modal
controllers of flexible structures? '

Cun adaptive regulation (stehilization) be achieved with
reasonable control levels despite inexact mode frequency
(and shape) prespecification?

How close must initial estimates be?

Is adaptive regulation “petter” (i.e, faster, closer to
some desired behavior, ...) than fixed or gain scheduled
control of comparable complexity designed for some bounded
uncertainty in mode frequencies(and shapes)?

What (if any) augmentations to currently available -
adaptive controllers improve -their Derformance with
application to flexible structures?



Given:

(1)

(2)
(3)

(4)

(5)

(B) -

(7)

(8)

ADAPTIVE MODAL REGULATION CANDIDATE

expansion -basis {¢1} finite expansion limit N, sensor
and. octuotor locotlons, and modul control objectives

ADDIV Drev1ously colculated qctu0t1on forces fj(xJ , )
and sense y(x, t)

Process sensor data to estimate M modal amplitudes
Yi (x,1t)

Select C- modeb requ1r1ng control

Process applied forces fJ(xJ, t) to determine achieved
modal forces F (t) , o

Improve- the identification of the discretization of the
¥y dynamics (i.e,. essentially: the modul. frequencies Wi)

Parameterize modal controllers using. current plant
parameter estimates. to. meet modal performance objectives
and - calculate F (t+1).

Convert desired niodal forces F (t + 1) to actuator
cormmands f (x , T+ D)

Repeat (1) - (7)

Source: Johnson, “Adaptive modal control of large flexible

spacecraft, ” J. of Guid. and Control, July-Aucust 1980,

17
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PROBLEMS

Finite number of modes accurately describing system N.z

number of modes identifiable M due to number of point
sensors > number of modes controllable C, i, e., the reduced-
order adaptlve identification/control Droblem.

Disregard of coupling due to 1nexact modol shape ¢y

‘specification,

Unbounded contfol effort request due to momentary uncontrol-
lability of estimated plant parameterization.

Lack of.guaranteed,parameter'identifiability without

sufficient excitation.

Misinterpretation of deflection due to short-term distur-

“bances as caused by parameter estimate inaccuracy,

- Meaningful prespecification of modal control objectives

(e.g., pole placement for quadratic cost function
minimization) given modal frequency and shape uncertainty,



ALTERNATE ADAPTIVE STRATEGIES

Asymptotic feedback matrix synthesis can bypass momentory
estimated plant uncontrollability, :

Source: Kreisselmeier, “Adaptive control vig odoptlve
observation and asymptotic feedback matirx synthesis,”
IEEE Trans. on Auto. Control, August 1980,

Avoid modal decomposition and treat as multi-input
(C actuators), multi-output (M.sensors) problem to
accomodate “modal” coupllnq with loss of comDutotlonol
advantages.
Source: Goodwin, Ramadge, -and qunes,,”Dlscrete tlme
multivariable ‘adaptive control, “IEEE Trans. on Auto.”
Control, June 1980,

Use direct adaptive controllers to bypass perturbation
necessity for identifiability.

Source: Johnson and Tse, ”Adoptive implementation of one-
step-ahead optimal control via 1nDut matchlng,x"IEEE Trans.
on_Auto. Control, October 1978,

Use Off-llne Dorqmeter estimation with verification prior to
alteration of gain schedule to avoid. reaction to non-
parameter-estimate errors such as deterministic disturbances.
Source: Hall, "A learning control system extension to

the modal control of large flexible rotating spacecraft,”
Proc, 1979 AIAA Guid, and Control Conf,, August 1979,

Limit controller parameterizations to positive real operators
with subsedquent 10ss in objective rangs in order to assure
stabilization despite reduced-order usage,

Source: Benhabib, Iwens, and Jackson, “Active vibration
control of a flat plate using model reference adaptive
techniques,” Proc, 2nd VPI&SU/AIAA Symp, on Dyn, and Control
of Large Flexible Spacecraft, June 1979,

19
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SPECIFIC QUESTIONS TO BE ADDRESSED

‘How many modes (with N-= M =C) are required in a modal,

simultaneous identifier-controller, initialized with

the ideal description of a free-free beam, to satisfactorily

regulate Langley’s flexible beam?

Using only displacement measurements what order actuator-
input, sensor-output, matrix-ARMA - model is satisfactory
for non-modal, multivariable GdGDtlve reaulotlon of

Langley’s flexible beam?

By describing the effects of ‘reduced-order modeling . as

g perturbation to the time-varying, nonlinear, parameter-
estimate-error system, can the theoretical limitations of
reduced-order adaptive control, especially in terms of
initial estimate accuracy, be- 1nterpreted?

U31ng a singular perturbation separation of the modes of
a flexible structure, can the effects of reduced- order

'vadoptlve control be quantlfled?' .



DYNAMICS AND CONTROL OF

COUPLED RIGID/FLEXIBLE BODIES

Elias G. Abu-Saba
Associate Professor of Architectural Engineering
North Carolina A & T State University
Greensboro, North Caralina

Workshop on the Structural Dynamics and Control
of Large Space Structures
October 30-31, 1980
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The

MILESTONES

Select and prepare a mission model

Write a set of equations of motion

Determine elastic constants of model components

Write a computer program for open loop input

Set up control block diagram

Simulate the dynamic system on the}computér‘

Orbiter and the SEP solar array are represented by the model shown in figure

MISSION MODEL

The coordinate system is shown on the diagram.

___,_,Astromast

D
N

| __—-Solar panels
5

‘ﬁii

/ |

Shuttle

/3

P>

6

(a) Real system,

Figure 1

(b) Ideal system.



KINEMATICS OF RIGID BODIES

Vo=V 4V
B. ‘A B/R
; o « -
B/R w r
- ;
w = rotation vector
+ 0 0 ‘
¥ = position vector
> el :
a = —
B at s

SEP SOLAR ARRAY MODEL

Figure 2
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MAST MODEL

Assumptions:
1. The total mass of the mast is concentrated at each level.
2. TLateral members are relatively much stiffer than longitudinal ones.

3. The deformations in the mast do not depend on axial forces present in
the londitudinal members.

Model: ' M,
> m el - [
‘ » me?
/ : m’ 5
) 4
b m‘ 4
3
1\
"y
J'\ My, @ NV
m, n
T e
Astromast Model Tdealized
.. 04
e Meist
Mast

% "‘?Cf' X4 X M
oy = ol 2, 2
" =21 T s t 7E

FLEXIBILITY MATRIX = (8]
STIFFNESS MATRIK = (K2 = [$"
MASS MATRIX (D/AGONAL) = [M)
FORCE MATRIX = (F]

| [MICK) 4+ [KX] = [F]
FREE VIBRATIONS
[MICK) + [K)X] =0

Figure 3



MODAL ANALYSIS OF ASTROMAST

JOINT
. 4 lw-
413 — //’ﬁ
Yoo ‘ ' \\ ‘\6\ “ﬁ’ /}\
\ 4\ T
‘ \ 3 ‘:;T’>
350 i \ w\ '
\ * |
300 ‘| \‘ \’ ,
l \ ' |
| :
250 .| \ [ |
! ‘ i/ I
| | /
| | !
200 . ‘
| | !
| |/
| |
150 \ - ;
' I |
100 : / \ :
| \ |
' ’ ‘\ ,
so l \ |
\ A
W \ /ﬁ;tfﬂ
o 177!7/7 TfLT —L — /\-—'——

Figure 4
MODAL FREQUENCIES

Modal frequency, Hz Modal frequency, Hz

fl f6 = 1.5334
f2 = 0874 f7 = 3.0030
f3 = 5478 f8 = 3.0031
f4 = .5478 f9 = 4.9644
f5 = 1.5334 hid =5.0242







' ADJUSTED FEEDBACK CONTROL FOR INCOMPLETE

DECOUPLING PROCEDURES -

Harold A. Hamer
NASA Langley Research Center
Hampton, Va.

Workshop on the Structural Dynamics and Control
of Large Space Structures
October 30-31, 1980
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INTRODUCTION

Complete decoupled control requires the number of control actuators to equal the
number of modes in the model, which is a basic limitation in applying decoupling
theory to the control of large space structures. Complete decoupled control is
usually not achievable in practical application because a large space structure may
have an infinite number of flexible modes; hence, procedures must be developed which
maintain control of the structure with a small number of control actuators. The
present analysis presents techniques which use decoupling theory and state-variable
feedback to control the pitch attitude and the flexible-mode amplitudes of the beam.
Approximations are incorporated into the decoupling procedure to permit control with
a small number of actuators. The approximations involve adjustments in the control-
influence coefficients and in the feedback gains which produce simplified procedures
for achieving overall control of the system.

28



EQUATIONS OF MOTION

Figure 1 shows the linearized equations of motion used for a decoupled-control
analysis of a 100-m long thin, flexible beam in low Earth orbit. The equations are
in modal form where n represents the number of flexible modes included in the model.
Although not required,  the damping term ZQwA is included in the model. The top
equation represents the rigid- body (pitch) mode and includes the gravity-gradient

effect, where We is the orbital frequency.

Figure 1
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DECOUPLED CONTROL EQUATIONS

Figure 2 shows the equations in state-vector form where the states x are the
modal amplitudes and rates. The output equation § = Cx represents the states to be
decoupled. In the decoupling control law v is the input command vector and. F
and G are the feedback and feedforward gain matrices, respectively. The output is
related to the input through the transfer function H(s). The decoupling procedure
determines the F and G matrices in a manner such that the transfer function is
diagonal and nonsingular, thus providing independent control for each of the
decoupled (output) variables.

SYSTEM T (A,8,C)

Xx=Ax +BFf , §=CX

LAPLACE TRANSFORM SOLUTION

A

A
g (s) = Hes)y V(s

-1
where H() = C(sI-A-BF) BG
is the mxm transfer function.

For decoupling , H(s) is diagonal and
nonsingular,

Figure 2
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EXAMPLE EQUATIONS

Figure 3 presents example equations for a four-mode model (pitch plus three
flexible modes) with four control actuators. The numbers in the
frequencies squared of the various modes. The damping terms have been omitted
because they are not required in the solution for decoupled control. The control-

influence matrix B depends on the location of the control actuators and the modal
shape functions.

A matrix are the

X = A% + B

) o o o o o o |le
A‘ o © o ) o | S} A,
{\2 © © o o o o 1 o [l
Azl = |© o o o o0 o o | As
o -3 o) 0 o o 0 0O o &
A, O ~0032 06 © © o6 o g A,
A, © o -8 0o o6 0 o o A,
| A3 |0 © 03 0 o o0 o 1A
[0 0 o o 7] [+,
o o0 o o £,
o © o o £,
+ o o o o ‘Fq.
T T T3 0T
(p),l <pl,:*, ¢t,3 4’1,4

Pz oz Gp3 D24
D G5z 33 byg

Figure 3
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DERIVATION OF DECOUPLING CONTROL LAW

Figure 4 is an example of a derivation of the decoupling control law for the
model of the previous figure. Inasmuch as the number of control actuators equals
the number of modes, complete decoupling is obtained. That is, each of the modes can
be independently controlled. Obviously, if the number of actuators is reduced, some
of the modes will remain uncontrolled. ‘These uncontrolled modes will be influenced
by effects because of control of the decoupled modes. Subsequent results will
illustrate several methods for reducing or eliminating these undesired effects.

Fov pitch control only;'flzf

. UK 4

3\=9J 4y, = © ;) Y= B

RTIE (-3 x-m"’)e + T ¢, + T,_-G,~ + T,f, + T;-Fq

To 6b+d;n de's‘;ru( Secona(-—o\—dé( V‘éSfon.Sé &Y'\QW\;CS)"
o . A » -6y ' .
hY 'l’_..li[ewag‘ T Wy, = (wj ~3x10°)6 4 &{awé-e +
TE . v TE =V

Similar e%uo.'ﬁons are deteemined for the mco(kl';\-mﬁll.iudé.
conteols. The Ffour eguations can be collected 1o form:

V= (W2 -3x10°)0 +28, w0t TyF +.... + T f,

Vy =(w - 0032)A, + u,@,A,-’g Y 71
V, = (C’i - -0139)31 +al, &4/:1,, + fl’;),\‘ﬁ co ot Pyt
V‘l =(w:*.0ﬁ34)R3 * p‘xawiéa +\.Q3,1'ﬂ r.n '+¢s,~lf4

Figure 4
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" EQUATIONS IN MATRIX FORM

Figure 5 shows the equations for the control law in matrix form. Note that the
feedforward matrix G is merely the inverse of the control-influence matrix. Each
column of G can be multiplied by a constant to change the output sensitivity. Note
that the matrix M is composed of the modal frequencies  and the damping
ratios . These are closed-loop quantities and their values can be selected to
provide feedback gains for desired dynamic-response characteristics. Note that the
feedback gain matrix can be separated into two parts, that part F' which deletes
the unaugmented dynamics and F" which incorporates the dynamics selected for the
closed-loop system.

V = MX + Nf

or F = -*N*!M? +N~IV

Providing N 1s not singular, then

1>

f Fz + GV

where

! "

F=-N'M =F'+F
G= N

are the required feedback and feedforward
matrices for the decoupling control law.

Figure 5
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PITCH COMMAND FOR COMPLETELY DECOUPLED MODEL

Figure 6 is an example of an instantaneous pitch command to change the pitch
attitude © by 0.01 rad. The quantities Ayr By, and Ay are the modal amplitudes;

f; and f,; are the actuator forces in newtons. As shown, the system is completely
controlled in that the flexible modes are not affected. The results apply to the
condition that complete feedback of all modal amplitude magnitudes and rates is

required. Also, the effect of unmodeled modes, not included in the computer simula-
tion, is not considered.

1.0 16 [ C\,‘ontrgl AN
ocations \,
E S ' 8 _F4 \
4o o ¢
-5 I ~8 fs //
1.0 16 1.8
g5 o 8 o B8 e
<€ 0 w% OS\\//' o 0o
-5 | | -8 I | -8 |
X 10-3 -
15[ 1.0 1.6
'310—— g S o 8
& N N
<S5 < 0 - 0\/
0 | | -5 | I | -8 |
0 60 120 180 0 60 120 180 ¢} BQ 120 180
Time, sec Time, sec Time, sec
Figure 6
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ZERO COMMAND FOR COMPLETELY DECOUPLED MODEL

Figure 7 is an example of an instantaneous zero command to null initial dis-
turbances of 0.01 rad in pitch and 0.0l m in the modal amplitudes. The values
selected for the closed-loop dynamics of each mode were w = 0.1 rad/sec and
€ = 0.5. This gives similar responses in all modes leading to equilibrium in
about 60 sec.
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ONE CONTROL ELIMINATED

Figure 8(a) is an example of a pitch command where the £3 control (actuator)
was eliminated from the completely decoupled system. The same F gains derived for
the completely-decoupled model were used, except that the gains for the f3 control
were deleted. As shown, this condition leads to uncontrolled first and third
flexible modes which are caused by oscillations in the f, and £, actuators.

Figure 8(b) shows how overall control of the previous case can be obtained by a
simple gain adjustment. The example is for a zero command and shows that the initial
disturbances are controlled (nulled) after about 100 sec. The gain adjustment

required in this case was a change in F, g (element in first row, eighth column of
the feedback matrix) by a factor of ten.

More than one control can be eliminated from the completely decoupled system;
however, as more controls are eliminated, a larger number of adjustments in the feed~
back gain matrix are required (involving many trial and error attempts).
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ZERO COMMAND WITH TWO ACTUATORS

Figure 9 presents an example of a zero command where the pitch mode and first
flexible mode are decoupled with two control actuators. This leads to incomplete
decoupling, due to the reduced numbers of controls. However, as shown, except for
some initial effects in the modal responses, overall control of the system is main-
tained. This is a special case inasmuch as the actuators are exactly at each end
of the beam. Gain information derived from this special case can be useful for
adjusting gains for other.control arrangements which lead to uncontrolled modes.
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CONTROL~FORCE REQUIREMENTS

Figure 10 illustrates the control-force requirements for the two-control model.
The values shown apply to a pitch command of 0.10 rad. It is important to note the
high dependence of control force on the value selected for the closed-loop pitch
frequency. At the larger values of ® the forces become prohibitive. The forces
for the higher-mode models are somewhat lower because the F matrices require
higher—order dynamics to calculate the gain values for these models.
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Figure 10
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EFFECT OF PARAMETER UNCERTAINTY

Figure 11 shows the negligible effect of parameter uncertainty on a pitch com-
mand; the solid curves represent the no-error case. The dashed curves represent a
typical result from a number of cases where random errors of +10 and *20 percent
were incorporated into the control-influence matrix B. For these cases, the feed-
back gains calculated for the original B matrix were used. The uncertainty in
beam model parameters was also found to have no appreciable effect on the decoupling
process. These uncertainties included errors of 20 percent in the modal frequencies

and large changes in the modal damping factors (up to 500 percent of the nominal
values).
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PITCH COMMAND WITH TWO ACTUATORS OFFSET

Figure 12 shows an example of a pitch command where the pitch mode and first
flexible mode are decoupled with two control actuators. This incomplete-decoupling
case differs from the previous case in that one of the actuators is not exactly at
the end of the beam. As shown for this offset case (which is the general case), the
required decoupling is achieved for 0O and Aq; however, the other two flexible
modes remain uncontrolled. This result is described in the next figure.
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FEEDBACK GAINS REQUIRED TO CHANGE DYNAMICS

Figure 13 shows the feedback gain matrices derived for the two cases, one for
offset actuators and one for actuators exactly at each end of the beam. Only the

first four columns are shown for F;xact' inasmuch as the last four repeat by

replacing S with R and @ with P. As shown for this matrix, fourth-order
dynamics are required to calculate the gains. The constants P, Q, R, and S
depend on the closed-loop values selected for ® and . The zero columns in
Fgffset’ which provide no control for the second and third flexible modes, result

from B-matrix columns of unequal magnitudes. The Fexact matrix is full order in

that no zero columns exist. This condition occurs only when the values. in the col-
umns of the B-matrix have exactly the same magnitude. The ratios between the
columnsvin F;xact can be used to adjust the feedback gains for the zero columns
of the offset case. 1In applying the ratio method, the third column of F is

offset
adjusted so that its ratio with the first column in Fgffset is the same as the

respective columns in F;xact' The same procedure is used with respect to the
fourth and second columns, the seventh and fifth columns, and the eighth and sixth

columns. A result of this gain-adjustment procedure is shown in the next figure.
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ZERO COMMAND WITH TWO ACTUATORS OFFSET
(FEEDBACK ADJUSTED BY RATIO METHOD)
Figure 14 shows an example of a zero command where the feedback gains were
adjusted by the ratio method previously described. As shown, the adjusted gains .

provide sufficient control for all modes. There are small initial effects, but they
damp out after about 200 sec.
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UNCONTROLLED - MOTIONS- FOR FOUR-MODE MODEL

Figures 15(a) and 15(b) dillustrate the use of Kalman'regulator theory in esti-
mating the modal amplitudes. Similar results are obtained for the amplitude rates.
These estimates are required for the feedback control inasmuch as the actual modal
values cannot be measured directly. The first plot shows the uncontrolled motions
resulting from small initial distrubances. 'The second.plot shows how well these
motions can be estimated with measurements from one pitch-attitude (star tracker)
sensor located at a point one quarter the distance from the end of the beam. This
plot shows that perfect estimates are established at a time of about 60 sec, where:
the magnitudes of the oscillations are equal to those of the first plot. (Oscilla-
tions .are actually present - in the estimates of Ay, but are not discernible due to
the large scale.) In.this one-sensor case, if the control actuators are turned on
before good estimates are obtained, excessive control forces would be required.
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ZERO COMMAND WITH THREE SENSORS

‘Figures 16(a) to 16(c) show zero-command results for a three-sensor case. The
sensors were located at the middle and quarter points of the beam and the control
actuators were at each end of the beam. In this case, the initial estimates were
adequate so that the actuators could be turned on at t = 0 without requiring
excessive forces, as seen in the last plot. These forces were about six times those
required for the case with perfect initial estimates. With only two sensors
employed, the forces increased substantially (to about 65 N), which would require
turning off the actuators until good estimates are produced.

These Kalman-regulator results apply to the case where unmodeled modes are not
considered in the computer simulations. In any practical application, unmodeled
modes cause observation and control spillover effects which can lead to instability.
Additional analysis is required to include these effects in determining the overall
stability and control of the system.
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1. Introduction

The feasibility of constructing large space structures such as the solar power
system, the SEP (solar electric power) array, or numerous other space structures
currently under study will undoubtedly be realized in the future. The existence of
such structures will depend to a great extent on the ability to analyze and control
large scale structures. The dynamic behavior will require algorithms that are effi-
cient for handling thousands of differential equations. These types of problems have
been included in disucssions on weather prediction by Bellman where tens and hundreds
of thousand partial differential equations are required for local weather phenomena.

Currently available algorithms will most likely be unable to handle large scale
systems because of storage requirements, execution time, or numerical accuracy. The
investigation of algorithms for large scale problems is part of the research being
carried out by this investigation. The primary objective of the research is to
obtain an efficient algorithm for decoupling a large set of differential equations
into subsets of differential equations that can be numerically integrated. The
solution of the large set is then constructed from the subset solutions.

Problems Under Consideration

. Spectral factorization

Decoupling of a large number of differential equations
Eigenvalue-eigenvector subroutines

Matrix polynomials

System identification

Ubd W N

2. Sign Algorithm

The sign algorithm was first introduced by Roberts as an algorithm to compute
the solution to the algebraic matrix Riccati equation given in equation (2.1). It
is not difficult to show that the matrix given in equation (2.2) can always be
associated with the matrix Riccati equation. The two solutions to equation (2.1)
are given in equation (2.3) where ©¢,. are partitioned blocks of the eigenvector
matrix of A as given in equation (5?4). The sign algorithm given by Roberts is a
Newton procedure where Si in equation (2.5) will converge to the sign of A.

Let A be 2nx2n with n eigenvalues having Re(A,) > 0 and n with
Re(Xi) < 0. If J is as defined in equation (2.6) then sign (A) 1is as given in
equation (2.7). It can be shown that the inverse of S + J contains the two solu-
tions to the algebraic matrix Riccati equation (see eq. (2.8)) and is related to the
eigenvector matrix of A as given in equation (2.9).

The T matrix will block diagonalize A when applied to A as a similarity
transformation. The resultant of the operation is shown in equation (2.10). The
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spectrum of A will contain only eigenvalues with Re(ki) > 0, whereas that of
AB will haveB Re(ki) < 0. The transformation on A is a spectral decomposition
ané is useful in solving a system of differential equations. Let x(t) be a 2nxl
vector satisfying the state equation (2.11). If =z(t) is as defined in equation
(2.12), then equations (2.13) and (2.14) hold where zl(t) and z2(t) are nxl
vectors which are partitions of the 2nxl z(t) <wvector. The system response vector
x(t) .can be recovered by using equation (2.15) or (2.16). The procedure can
obviously be extended to more than two diagonal blocks.

Knowledge of the sign matrix of A is sufficient to define a set of eigen-
projectors P; and P, for a simple spectral decomposition. If P; and P, are
as defined in equation (2.17), then A and A2, as given in equation (2.18), will
have spectrums p(Al) > 0 and p(Az) < 0. The eigenprojectors P and P will
also decompose x(t) into two 2nxI wvectors xt(t) and x"(t). ~The vector xt(t)
will be a function of exp(lit) with Ai having Re(Xi) >0 and x7(t) will contain
modes with Re(li) < 0.

The eigenprojectors introduced in the previous paragraph were computed from the
sign function computed on the basis of splitting the spectrum along the Jjw axis.
The bilinear transformation of equation (2.20) will permit a spectral decomposition
with respect to circles of radius 0 chosen as to split the spectrum by eigenvalue
magnitudes. The previous analyses still hold and, as before, several transformations
may be used to decompose the spectrum into more than two domains.

The above decoupling procedure has several disadvantages. The first of these
is the requirement for inverting 2nx2n matrices which is costly and inaccurate when
n is large. In addition, several large matrices must be stored. An alternate
approach is to use a standard eigenvalue-eigenvector routine to compute S. There is
very little to gain in this approach, since the time domain solution can then be
determined without the use of the decoupling.

2.1 + - - =
(2.1) Big ¥ AR - BAy, mRAR=0
A, A
11 812
{2.2) A= Aij are nxn
Ay1 BApy
(2.3) R, = &.. O.* R, = & o1
1 12 22 2 11 o1 Ri are nxn
0] 0]
11 12
(2.4) d = $.. are nxn
o.. @ +J
21 ‘22
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(2.5)

(2.86)

(2.7)

" (2.8)

(2.10)

(2.11)
(2.12)

(2.13)
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3. Matrix Polynomials

The difficulties encountered in the previous section are less severe if the A
matrix is in or can be transformed into the block companion form and certain algorithms
can be developed. As an example, assume that A has the form given in equation (2.2)
which can be transformed into the second order companion form of equation (3.1) by
a Krylov transformation given in egumation (3.2). A typical Krylov matrix is given
in equation (3.3) where it is assumed that Aqp is invertible. The matrix polyriomial
of equation (3.4) will have 2n latent roots Ai and 2n latent vectors y; where
the latent roots A, are the eigénvalues of A and A_,. The latent vectors Yi
are the 2n vectors of @l and @2 where ¢ is the eigenvector matrix of A.
Since A(A) is of the form of the differential equation for a finite element model,
the second order matrix polynomial is usually of interest in structural problems.

The coefficients of the matrix polynomial, the latent roots, and the latent vectors
of A(A) require less storage than that required for storing Ay, the eigenvalues
and the eigenvectors. This approach is therefore of interest because of storage
requirements. The disadvantages of formulating the problem in terms of matrix poly-
nomials is that efficient algorithms for computing the latent roots and the latent
vectors of A(A) do not exist. This is an area that is currently under investiga-
tion. ‘ ‘

A substantial decrease in storage requirements can be obtained by transforming
A()A) into a higher order polynomial with matrix coefficients of lower order. Assume
that A(A) is nxn and that A is 2nx2n. If 2n is divisible by m in an integer
sense, then an mth order polynomial can be found when A(A) has distinet latent
roots. The matrix coefficients of A(A), as given in equation (3.6), will now be
(2n/m) x (2n/m) matrices. The latent roots of A(A) and the latent vectors are
sufficient to define the eigenvalues and eigenvectors of A where A is 2nx2n as
given in equation (3.7).

The computation of the eigenvalues and eigenvectors of Ac or the latent roots
and latent vectors of A(A) is not necessary if the time domain solution to the
system differential equation is sought.

The Krylov type transformation required to construct the higher order poly-
nomial is also used to transform =x(t) to a new vector =z(t), as given in equation.
(3.10), where z(t) will be partitioned as in equation (3.11l). It can be shown
that z;(A) will be defined by equations (3.12) and (3.13) with z;(t) given b

equation (3.14). x(t) can then be constructed from the zi(t) with x(t) = K “z(t).

A second method of analysis is to use block matrices throughout. Let ¢i be
solutions to the mth order polynomial, then A(A) can be factored as in equation
(3.15). Thus, z,{t) can be found from equations (3.16) and (3.17). The zi(t)
required for constructing x(t) are found in a similar manner with the proper
modifications in the matrix coefficients of equation (3.17).
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The procedure given has several associated problems which must be solved prior
to implementing the above algorithms. The first of these is that there does not
exist an efficient algorithm for the Krylov transformation to construct the mth order
polynomial from a lower order polynomial. Secondly, there does not exist at this
time an efficient algorithm to compute the latent roots of A(\) or the latent
vectors. The factorization procedure expressed in equation (3.15) is also an area
for development of an efficient algorithm. The development of these algorithm is
presently under study.

0 I
(3.1) A, =
"A2 "Al
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(3.10) z(t) = K x(t)

(3.11) 'zT(t) = [?l(t)'zz(t)'; ;»;-Zﬁ(ta e T e 'zi(tf is ‘?p/yﬁ;
(3.12) A z(A) = B(A) UQ) A(M) is 2n/mX2n/m
-1 2 By,
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(3.17) zl(t) = ;El P,lo exp [Qi(t - T)]g(T)dT

4. System Identification

Numerous algorithms have been written for the identification of a system and for
parameter estimation. The method of least squares solution of a set of overdetermined
equations appears to be the most widely used algorithm, although there are other
methods that are acceptable. The least square algorithm basicly takes the discrete
time data from the system response with a known input to define an overdetermined set
of equations. As an example, free response is given in equation (4.1) for a time
invariant system having a typical set of equations for a system with no input. The.
matrix © is the state transition matrix which will be invariant for all t. Equa-
tions (4.2 to (4.5) can then be established.

The unknown parameters in O are then,démputed by a least.squares algorithm
such as given in equations (4.6) and (4.7). This approach is not recommended but is
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given only to illustrate the simplest procedure. The singular value decomposition
would be preferred for determining the ‘vectors Oi. ‘ )

The complete set of row vectors ©, would be identified and ‘© would then
be known. Since O is discrete, the state transition matrix will have the form
given in equation (4.8). The eigenvalues and eigenvectors of © could then be
identified. It has been assumed that all computations were made with no error
although this is an ideal situation. It must also be assumed that the sampling
frequency of the system response has been sufflclently high to satlsfy the sampllng
theorem.

The numerical problems encountered in the decoupling algorithm will be present
in the identification procedure. The storage requirements of the algorlthm dictate .
that a large machine be available, and the algorithm will probably require multiple
precision. The execution time for a system with 1000 elgenvalues on a typlcal
machine may be an hour. -

The research has concentrated on the decoupling algorithm, eigenvalue and eigen-
vector algorithms, matrix polynomials, and identification procedures. The decoupling
algorithm as presently used requires inversion of large matrices which is inefficient,
Experience with applying the algorithm to a free-free beam indicates that numerical
errors are severe when the beam has several hundred nodes due to the condition number
of the matrix or the range of the elements in the matrix.

Numerical errors have also been apparent in the use of the elgenvalue—elgenvector
subroutines from EISPACK on relatively small matrices, 30 X 30. The free-free beam
problem with twenty-one nodes has been decoupled with the algorithm discussed in the
next section, and it has been necessary to use an elgenvalue—elgenvector subroutine
with all computations in double precision on a 30-bit machine.

Research on matrix polynomials has been underway, and some of the results were
presented in Section 3 of this report. This mathematical development of algorithms
for analyzing matrix polynomials has not received the attention that. seems to be
warranted. Some aspects of the use by matrix polynomials will be covered.

System identification of large scale systems has not received much attention in
the past, since most practical systems are of order 100 or less. TIdentification of a
system with 200 or more parameters is not a commonly occurring computational task.

The use of a matrix polynomial in identification has received very little, if
any, attention in the past. The identification algorithm by quadrature methods uses
scalar functions for determination of the parameters. The duestion arises as to
whether matrix functions can be utilized rathéer than the scalar functions. This
question and many other remain unanswered.

(4.1) x(k + 1) = Ox(k) T = sampling time: k = t/T
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INTRODUCTION

Controlling large, flexible objects in space is currently a "hot" topic in the
research community. Many "solutions" have been proposed, most of which have
either not worked in practice or have flaws which come to light when one considers
implementation. At Honeywell, we have done extensive research on implementable
control designs, which has served to gulde the resedrch to be performed. One of
the critical problems we see is in obtaining and then properly using accurate
information about the structure to be controlled.

By way of motivation, I will first give a brief review of our view of LSS control,
describing the problem and what's new. Following this, the results of applying a
new identification measure to a sample LSS will be presented. These results indicate

the promise/problems of on-orbit identification. I will conclude by summarizing the
line of research we are pursuing.

MoTIiVATION
IDENTIFICATION
OurR PROGRAM

ExpeEcTeD RESULTS

Figure 1
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THE CONVENTIONAL PROBLEM

In the past, spacecraft flexibility has been handled by requiring the flexible modes
of the spacecraft to occur well outside the bandwidth of the control system. Where
this did not occur naturally, system modifications were made to ensure that it did
happen. By then "rolling-off" the control system, 1nteract10ns with the flex1ble
dynamics were avoided.

TRANSFER FUNCTION STRUCTURAL MODES
MAGNITUDE el : (FLEXIBILITY EFFECTS, ETC.)

-
I | | LN ]

SOLUTION: “ROLL OFF" CONTROLLER TO AVOID EXCITING HIGH FREQUENCY MODES

_ Flgure 2

_ CONTROLLER BANDWIDTH -
(POINTING, SHAPE REOUIREMENTS ETC)
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THE PROJECTED PROBLEM

As spacecraft grow and become more flexible and as control bandwidth increases due
to increasingly stringent control requirements, the solution of forced separation
is becoming intolerable. Talk is heard of hundreds of flexible modes within the
bandwidth. This overlap characterizes what we call "the LSS control problem."

The solution is then clear: one must "actively control" the modes in the pass band

of the controller and roll-off (while maintaining stability) the highexr frequency
nodes.

STRUCTURAL MODES

TRANSFER FUNCTION MAGNITUDE

CONTROLLER BANDWIDTH

SOLUTION: 1) ACTIVE STRUCTURAL CONTROL OF MODES
WITHIN CONTROLLER BANDWIDTH.

2) “ROLL OFF”"CONTROLLERS TO AVOID EXCITING
STRUCTURAL MODES BEYOND CONTROLLER BANDWIDTH.

Figure 3
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INFORMATION TRADE-OFF

There are two basic approaches to achieving these. The first is a robust controller
based on colocated actuators and sensors using rate feedback. This approach is
extremely insensitive to model information requiring only crude mode shape and
frequency information and only a limit to damping. However, the amount of modal

damping achievable this way is limited and relatively hlgh bandwidth actuators,
sensors, etc., are required.

In contrast, many methods have been proposed which achieve better damping and require

less bandwidth from components. However, invariably, these require accurate model
data.

o RoBust ConTROL
—  INSENSITIVE TO MoDEL INFORMATION
—  AcHieveD DampinG LimiTED
=  Requires HiGH BANDWIDTH INTELLIGENCE

] HieH PerForMANCE CoNTROL
=  AcHIEVES HiGH DamPING
=  ReQuIRes Less BANDWIDTH
—  Very SensiTive 10 MoDEL DATA

Figure 4
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“WHY - IDENTIFY

In general, pre-launch data is not accurate enough to permit design of:-high
performance controllers. Thus, if the benefits of these are to be realized, system
identification must be performed. : . S :

'WANT BENEFITS OF HiGH PERFORMANCE CONTROL
o  Pre-Launci Data Poor
] OnLy Two OPTIONS

=  ADAPTIVE

~  IDENTIFY AND RECONFIGURE
o  EITHER REQUIRES IDENTIFICATION

Figure 5

IDENTIFICATION
Two basic methods of system identification-aréfcﬁrrently'popular in the aerospace
community: those based on Maximum Likelihood Estimation (MLE) and those based on
the frequency domain (FFT). Some recent advances in the MLE analysis are very useful

for our type of problem. We have applied these to a sample problem, the results of
which I would like to present. o o

o MaximMum LIKELIHOOD ESTIMATION (MLE) Basep

e FRrequency DoMAIN BASED

Figure 6
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The MLE method is based on finding which model from
models cdmes _,clo‘ses't”to the true System.
minimizing the negative log likelihood fun
Kalman filter based on & model M,

Of course,

ever perfectly match the true system.

a (possibly-infinite) set of
--Closest, for the MLE method, is defined as -
ction.which can be computed from. the

LSS'are infinite diménsional and thereforevno finite dimensional model can

and until recently no method of analysis was available.

X(k+D) = Aex(T) + Bau(T) + Lel(T)
Z(v) = Cax(r) +O(T) oo

TRUTH: Mo = {A.,B. Co, Lo, B, 9«»}
et Mo = fher Bes Cor La Ear04f
6oAL: FIND MODEL Mg “CLOSEST" TO Mo,
CLOSEST = MINIMIZE THE NEGATIVE Log ukéliﬁbc‘m‘ FU&C:TXE)N

(compuTED FROM KBF FOR M,)

Figure 7

This mismatch has caused problems in the past
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DISTANCE MEASURE
Based on recent work by Baram, extended by Yared (Ph.D. thesis, MIT, 1979), a
distance measure relating the information favoring one model over another can now be
computed. Using this, the distance from a model to the true system can be computed.
Note that this assumes the true system to be known. It is, however, useful for
analysis purposes for predicting the behavior of the MLE method under various model

order, initial condition, and noise conditions.

la = EXPECTED VALUE OF THE CONDITIONAL LIKELIHOOD FUNCTION
WITH RESPECT TO THE TRUE SYSTEM. |

[} [
1(e;,8;) = lap - lay = DISTANCE MEASURE

INFORMATION FAVORING MODEL a,0VER ay.

[(*,2) = DISTANCE FROM TRUE SYSTEM TO MODEL @.

Figure 8
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SAMPLE TETRAHEDRAL TRUSS STRUCTURE

We have applied this technique to a sample structure used in the ACOSS program known
as the tetrahedral truss. Test signals (forces) and displacement measurements were
assumed in one leg of the truss. Noise sources were included as shown.

Tests were then conducted to determine the distance between the assumed true system
and a model. For all tests, the model used for identification contained a single
mode while the number of modes used to represent the true system was either one or
nine. In all tests, only one parameter was assumed unknown.

/ NODE NUMBER

Displacement Sensor

Notes:
Plant Disturbance .005 ms (produces .001 at sensor)
Sensor Noise 001 mms
Test Input .05 mms (produces .01 at sensor)
Damping Ratio .5%

Figure 9
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DISTANCE FROM.ONE MODE TRUTH FOR W ID
In the first-experiments, the objective was to identify the frequency of a model
assuming. the -damping to be known.  If. the true system and identification model match

in order, the distance is as below...

Note that the distance.is zero:at the. true value of the parameter.  Also, the:valley
is very steep, indicating good local convergence but réquiring good initial guesses.

e.20

2.15 \

0.10 4 e : B e

0.05 : -1

e.80 T 1141- -rtvrt et et Ty
1.0 i

:5 209 2-5 o . 3.0 3.5 400

Estimate of 'l

True Value __
Figure ‘10
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DISTANCE FROM 9 MODE TRUTH FOR - & ID

If the true system is larger, the distance becomes large and no value of w, reduces
the distance to zero. In addition, multiple minima occur. ’
406.5 .
-
-
40.0
-
-
-y
-y
-39.9
-
-
-
39.0
q
-
-l
38‘5 LEBR I | T v 7 7 v vV 7 v vV v T | BEEN N N 4 v L B |
1.0 1.9 2.0 2.5 3.0 3.5 4.0
Estimate of\vl
True Value

Figure 11
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DISTANCE FROM ONE MODE TRUTH FOR DAMPING ID

If damping is assumed unknown (but first mode frequency is known), the distance
measure curve becomes quite broad and well shaped. If the true system and the model
agree in order, this measure reduces to zero at the true value. However, the lack
of significance of distance measure indicates that the convergence of the MLE method
will be poor and susceptible to noise.

.020

.015 \

.010
. 005 ——— 7
) True Value
: 1
.800 — A 2 § \ T‘/ | ]
. 000 .002 . 004 . 006 . 008 .010

Estimate of Demping Ratio

Figure 12
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DISTANCE FROM 9 MODE TRUTH FOR DAMPING ID

This conclusion remains if the true system is assumed larger than the model. 1In
addition, a bias can be seen between the minimum distance damping ratio (the value
the MLE method will converge to) and the true value. This bias is caused by the
order mismatch and it is important to analyze this bias as it limits MLE performance.
In addition, tradeoffs can now be performed to determine how large the identification
model is required to be to keep the bias "small enough".

40,260
ﬂ
-
40,2355 A
)
40,250
)
-
40,245 : - Wi
40,240 p—
: True Valve
] | | |
40- 235 T . ) LJ ' AJ v
. 000 . 002 ., 004 ~ . 006 . 008 .010

Estimate of Damping Ratfo

Figure 13
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CONCLUSIONS TO DATE

We now have a tool which can be used to analyze these biases and other effects of
system mlsmatch

The next step is to enlarge the study to include a more realistic situation.

TooL For ASSESSING MISMATCH

MISMATCH CAM RESULT IN BIASED ESTIMATE
FREQUENCY ESTIMATE WILL NEED GOOD INITIAL 6UESS
DampInNG HARD TO ESTIMATE

MORE STUDY NEEDED

Figure 14

OUR PROGRAM
We will be doing this by starting with a realistic strawman -- the space shuttle
with a payload on the end of the remote manipulator system (RMS) arm. - In addition,
we will be supporting and guiding the beam experiment as needed and will be guided
by those results.
Our first step is to determine representative parameters'for sensor noises, actuator
uncertainties, and other disturbances. This will help insure that our results are
of more than academic interest. We will then be performing extensive identifiability
studies to determine how accurately the parameters of the model can be identified.
Finally, a controller will be designed which is compatible with the expected

residual uncertalnty and the performance compared to that obtained using a robust
controller. :

o Use THE SHUTTLE/RMS/PAYLOAD AS STRAWMAN,

= ALSO BEAM EXPERIMENT
DeTERMINE REPRESENTATIVE ENVIRONMENTAL PARAMETERS.
INVESTIGATE IDENTIFIABILITY OF PARAMETERS.
DES1GN A CONTROLLER USING AVAILABLE PARAMETERS.
CompARE RESULTS WITH THOSE USING JLAS/RATE FEEDBACK,

Figure 15
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EXPECTED RESULTS

In this way, we will determine the limitiations to be expected in performing on-
orbit parameter identification. In addition, we will have investigated how these
limitations affect the control design process and identified the achievable benefits

using a high performance controller in place of a robust one.

o LIMITATIONS ON SYSTEM IDENTIFICATION

o EFFECTS OF THESE LIMITATIONS ON CONTROL
DESIGN.

® How TO DESIGN WITH AVAILABLE INFORMATION
® Benerivs over “Rosust ControL”

Figure 16
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EXPECTED NUMBER OF COMPONENT FAILURES IN A YEAR

Why do we need to consider component unreliability? A large, lightweight structure in
space will display many vibratory modes which may have to be actively damped to assure
mission success. Effective control of these many modes will require use of a large
number of sensors and actuators -~ possibly hundreds of them. Even if these control
systems are serviced in orbit, one would like the service interval to be long - at
least 1 year. With component mean time between failures which can reasonably be
anticipated, one must expect many of the control system components to fail in the

course of a year. Figure 1 presents the expected number of component failures per
year versus component mean time’ between failures.

Number

] | Lo L1l ] I N O O

10,000 100,000 1,000,000

Figure 1
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PROBABILITY OF ‘ADDEITIONAL FAILURES: WITHIN 24 HOURS
OF A COMPONENT FAILURE"

Will it be necessary to accommodate more than one component failure at a time?
Following a component failure which is detected and identified, the system will be
reconfigured to function with the remaining components. This reconfiguration should
be accomplished in a relatively short time = perhaps on the order of 1 day. With the
component mean time between failures which must be achieved to restrict the expected
number. of failures. 1n a_year to a reagonable value, the probablllty of one orimore
additional failures in 1 day follow1ng é single failure is small. (See fig. 2.) To
reduce this probability further, it may :be possible.to’.reconfigure the failure
detection and identification system more quickly than the complete control system.

LE

Probability

..001 | IR TSI PR RN RPN NN N Il 111 \
10,000 ' ‘ 100,000 ’ 1,000,000

Component mean time between failures, hr

Figure 2
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SYSTEM OPERATIONAL APPROACH

Figure 3 outlines the system operational approach.

IMPLEMENT A QUICK-REACTION STANDBY MODE OF CONTROL FOLLOWING
INDICATION OF A COMPONENT FAILURE.

CompLETE FDI SYSTEM RECONFIGURATION QUICKLY—PERHAPS WITHIN
A FEW HOURS.,

COMPLETE CONTROL SYSTEM RECONFIGURATION AS SOON AS POSSIBLE—
PERHAPS WITHIN A DAY,

Figure 3

SYSTEM DESIGN APPROACH

Figure 4 outlines the system design approach.

76

UTILIZE FAULT-TOLERANT COMPUTERS AS DATA PROCESSORS FOR THE CONTROLLER
AND FDI FUNCTIONS.

INCORPORATE DIAGNOSTIC AND/OR BITE INFORMATION TO GIVE DIRECT INDICATION
OF COMPONENT FAILURES WHERE POSSIBLE.

IMPLEMENT AN FDI SYSTEM TO DETECT AND IDENTIFY SINGLE ADDITIONAL CONTROL
SYSTEM COMPONENT FAILURES—SENSORS AND ACTUATORS.

ANALYZE SPECIFIC SYSTEM IMPLEMENTATIONS TO CHECK FOR COMPLETE FDI COVERAGE
INCLUDING OTHER COMPONENTS SUCH AS POWER SUPPLIES, DATA CONVERTERS, DATA
TRANSMISSION LINES, ETC,

Figure 4



FAILURE DETECTION AND IDENTIFICATION

Figure 5 outlines failure detection and identification.

MANY APPROACHES To FDI HAVE BEEN SUGGESTED.

WILL NOT CONSIDER METHODS WHICH REQUIRE SPECIFICATION OF THE
MODE OF FAILURE.

WILL CONCENTRATE ON METHODS WHICH ARE APPLICABLE TO BOTH SENSOR
AND ACTUATOR FAILURES.,

TWO CANDIDATE TECHNIQUES FOR INITIAL CONSIDERATION:
AN OPEN LOOP METHOD: GENERALIZED PARITY RELATIONS

A CLOSED LOOP METHOD: FAILURE DETECTION FILTER

Figure 5
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... 'GENERALIZED PARITY -RELATIONS

The usual concept of parity relations in FDI applies to ‘redundant ‘measurements such’
that a linear combination of the measurements can be set to zero.

The generalized concept of parity relations utilizes measurements at more than one
time, which introduces actuator input signals as well as sensor output signals.

Discrete system model:

Xx+1 T A x, + Bu + 0y

zk = C §k + D Ek + Vi

Y, = Cx +Du +vVv

=k k —k
Yier1 :qCAx§kg+,Cngka+riD‘gk;l_#LC:Qk + Vi
_ 2
 Ypyp T AT E Y CAB OB Mgy D Bs
+ CA oy + C Ek+1i+:zk42w

etc.
Example:

1 0.3 0.1 0 1 0 O

A=10 1 044 B'= 0.1 e o= D =20

0 0.2 0.5 0.6 0 1 0
Except for £he ﬁéiée terms,

Yix = *1x :

Yok = *2x

Yik+l = *1x + 0.3 Xox + 0.1 X35

Yox+1 = Xox 0.4 Xqp + 0.1 vy

Yik+2 = ¥1k + 0.62 Xop + 0.27 Xqy + 0.09 u,

Yorso = 1.08 Xop t 0.60 Xy t+ 0.34 u + 0.10 Uy



One simple generalized parity relation for a groﬁp'éf four rate gyros at one location
can be derived‘considering;_

N

Measuremments : =c,” W

ik = g i=1,23,4

The set of four e; in -three-dimensional space are dependeént, and one can find a, .
such that

4 N
E a 0]
i=l
Thus - o
4
Tk T 2 a3 Yig
i=1,

equals zero except for noise. A s:gnlflcantly nonzero rk indicates a failure among
the four gyros. : '

More generalized parity relations are formed from dependent rows of C, ca, CA2,

etc. This eliminates the unknown state Xy from the parity relations.
An appropriate set of parity relations must be used, each depending on different sub-
sets of sensors and actuators, s0 that from the set of residuals one can identify the

failed component.

One possible set of parity :glaﬁions,is for the example: = -

D

= . -— 9 ) .—. . -
Tak T -9 ¥y = 0.01 ypy = 0.9 yipgpt 049 Youuy < Yoo

Tox T 70:42 vy + 1.5 y2k+1 Vokez F 0419 v + 0.1y,

T3k T4 Y t 0020y, - 4 Y1k+1 T Yok T 01wy

Sensor 1 fallure —» ry ,nét r ’ r
Sensor 2 failure -—} rl P, r, I
Actuator failure — 3 not ry o r, ' rs
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FAILURE DETECTION FILTER

The failure detection filter (fig. 6).incorporates a model of the system being
monitored. The difference between the filtéer output and the measured outputs of the
system are fed back through the matrix D to cause the model to track the system.
If the system is performing nominally, the output errors, after initial transients
have subsided, are due only to unmodelled noises and disturbances and to model
mismatch.

When a component fails, the model no longer matches the behavior of the system and a
significant output error develops. The filter gain matrix D is designed so that
the output error due to each monitored failure is restricted to a single direction,
and that direction is different for each component the filter is designed to
monitor. Thus the presence of a significant output error - larger than that due

to noise - indicates a component failure, and the direction of that error identifies
the component that failed.

It is possible to use detection filters to monitor sensor failures, actuator fail-
ures, and to indicate significant mismatches in system parameters.

Reference: Beard, R. V.: Failure Accommodation in Linear Systems Through Self-
Reorganization. NASA CR-118314, 197l.

System
Y . \ y
> Vehicle dynamics —
Actuator Actuator dynamics Sensor
inputs Sensor dynamics outputs
E
[ 1]
@
>
[2]
S
3
S Controller
<
v +
< /! Lo
F D
2 \:?u Qutput
£ error
[
©
o Modelled
> outputs
u System
v Model
Figure 6
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QUICK-REACTION STANDBY CONTROL MODE FOLLOWING A FAILURE

Pigure 7 presents the quick-reaction standby control mode following a failure.

A SIMPLE CONTROL SYSTEM WHICH MAINTAINS STABILITY AND RESTRICTS
RESPONSE TO DISTURBANCES IN SPITE OF LOSS OF AN ARBITRARY COMPONENT,

NORMAL PERFORMANCE REQUIREMENTS MAY BE SUSPENDED DURING STANDBY OPERATION,

ONE CANDIDATE IS A CONTROL SYSTEM WHICH ONLY FEEDS BACK RATE
INFORMATION TO COLOCATED ACTUATORS.

Figure 7
SYSTEM RECONFIGURATION

An outline of the system reconfiguration is given in figure 8.

USE OF THE INTERIM STANDBY MODE ALLOWS SOME TIME IN WHICH TO
RECONFIGURE THE CONTROL SYSTEM; A DAY SEEMS REASONABLE,

WITH THE CONTROLLERS IMPLEMENTED AS DIGITAL DATA PROCESSORS,
RECONFIGURATION AMOUNTS TO REVISING THE PROGRAMS WHICH THESE
PROCESSORS EXECUTE.

THIS COULD BE AS DIFFICULT AS DESIGNING THE SYSTEM IN THE
FIRST PLACE—BUT USING FEWER SENSORS AND/OR ACTUATORS.

IT 1S ASSUMED THAT MOST MISSION SITUATIONS WILL PERMIT
GROUND-BASED SUPPORT OF THE RECONFIGURATION FUNCTION WITH
THE RESULTS UP-LINKED TO THE SPACE SYSTEM,

LOOK FOR WAYS TO SIMPLIFY THE RECONFIGURATION PROCESS—PERHAPS

USING INFORMATION GENERATED DURING THE ORIGINAL DESIGN OF
THE SYSTEM,

Figure 8
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RESEARCH TASK 1

Research Task 1 calls for development of a preliminary capability for the detection
and identification of failures in the sensors and actuators of the laboratory
experiment at Langley Research Center.

la.

1b.

lc.

1d.

Research
into one

FDI,

82

and

2a.

2b.

2c.

2d4.

Obtain from LaRC a dynamic model characterizing the laboratory apparatus
and design a simple control system of some standard form to control the
experimental plant.

Choose one or more of the currently available FDI techniques to apply to
this problem.

Design the FDI processor for this application, including determination of
all parameter values such as threshold settings, and check it out through
simulation.

Prepare and deliver a FORTRAN program which can be compiled and executed on
the 175 CYBER system at LaRC to demonstrate real-time FDI on the laboratory
experiment system.

RESEARCH TASK 2

Task 2 investigates the possible advantages which may accrue from integrating
information processor the functions of state estimation, sensor and actuator
parameter mismatch indication.

In the context of space structure control, separate the sensor and actuator
FDI problem into two parts: one processor which monitors at least some of
the sensors without use of system modeling, and one processor which monitors
actuators and perhaps some sensors by a technique which depends on a model
of the system dynamics.

Determine whether it would be efficient and convenient to extend the second
FDI processor defined in Task 2a to monitor significant deviations in plant
parameters from the modeled values.

Determine whether an additional price in computational capacity must be paid
to derive an estimate of the system state from this. combined processor.

If the results of the above tasks have been favorable to the concept of the
integrated processor, summarize the form that such a processor would likely
take in a space structure control application and specify the logic which
would be used to derive the best estimate of state under nominal and failure
conditions.



Research

RESEARCH TASK 3

Task 3 studies the problem of efficient reconfiguration of a space structure

control system, including its FDI processor, following a component failure.

3a.

3b.

3c.

3d.

Inquire into simple methods of reconfiguring the state estimator (s) follow-
ing a sensor failure. Consider both the case of systems with highly
redundant sets of sensors and the case of more sparse sensor sets.

Inquire into simple methods of reconfiguring the controller(s) following an
actuator failure in the case of systems utilizing only linear control
devices. Consider both the case of systems with highly redundant sets of
actuators and the case of more sparse actuator sets.

Inquire into simple methods of reconfiguring the controller (s) following an
actuator failure in the case of systems utilizing on-off jets. Consider
both the case of systems with highly redundant sets of jets and the case of
a more sparse complement of jets.

Inquire into simple methods of reconfiguring the FDI processor following a
sensor or actuator failure.

RESEARCH TASK 4

Research Task 4 investigates design techniques for multidimensional systems utilizing
on-off control devices.

da.

4db.

4c.

44d.

Determine the nature of optimal trajectories for the problem stated in the
Technical discussion in the case of a single-input system.

Define the nature of the cost function J(x) for the single-input system for
initial conditions near the origin and far from the origin. Try to charac-
terize this function on the basis of analytic arguments and check the results
with computed optimal trajectories.

Synthesize the controller which minimizes the Hamiltonian function with the
costate variable identified with the gradient of an approximate cost func-
tion. Compare the performance of the resulting feedback control system
with optimal performance.

Attempt to generalize the above steps to multidimensional systems with an
arbitrary number of on-off actuators.
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INTRODUCTION

The Jet Propulsion Laboratory flexible beam facility was designed to be sufficiently
general to demonstrate a variety of flexible body control concepts. Some of these
concepts include static shape control, vibration control, multi-input/multi-output
control, noncolocated sensors and actuators, adaptive .control, and distributed con-
trol. The facility consists of a 3.8-m by 15.2-cm by 0.08-cm (12%-ft by 6-in by
1/32-in) pinned-free flexible stainless-steel beam hanging in the Earth's gravity.
Four eddy-current position sensors and three brushless dc motors provide position
information and force capability. A 6502 microprocessor with developed software
completes the control loop through twelve bit D/A and A/D interfaces.

e DEMONSTRATE LSS CONTROL IDEAS
e DEVELOP FACILITY WITH GENERAL APPLICABILITY

e STUDY HARDWARE LIMITATIONS

JPL
CELESTARIUM

CRANE CARRIAGE
pinceo-sree || ig&EPSRT FOR HOISTING/
FLEXIBLE BEAM~ | LOWERING OF

LN\ BEAM/TOWER
XD
A7 ,/\i
e 7
/’ //
,./ﬁ:»_-__ A = L
< 1 o pE=g
\
b 2. IV | S . |
v '
V///4
| 6.1 m .
(20)
Figure 1
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BEAM DYNAMICS - STRING OR ELASTIC BEAM?

The hanging beam is in tension due to.gravity, and because of the very small bending
stiffness, low-frequency modes appear string-like, while the higher frequency modes

appear beam-like.

Dynamic mode shapes are computed using string or beam partial

differential equations of motion, and the results are then combined to produce accu-

rate system mode frequencies.

y(0) =0
y(L) = FINITE

SHAPE BESSEL FUNCTIONS
FREQUENCY R 2% (k-1/4)2 2

4
py +EI ?—% =0
aX
y(0) =0
y'(0) =0
y"(L) =0
y'"™L) =0

HYPERBOLIC FUNCTIONS

4
Wl = EL [(4k+1)1] k=01 ...
4 4
pL

"

Figure 2
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MODES

n =1
0.30 Hz
(RIGID
BODY)

3.20 Hz

|

Figure 3
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SYSTEM NONLINEARITIES

The effects of all major system nonlinearities are analyzed using an open—-loop
perturbation analysis to determine the frequency shift or damping ratio shift due
to the perturbing force. The largest effect is due to aerodynamic drag with the
result being the addition of 1% of critical damping. The remaining list of non-
linearities were constrained to have a negligible impact on the beam dynamics
from the beginning of the design process using the perturbation analysis to pre-
dict the resulting magnitudes of the various nonlinearities.

o AERODYNAMIC DRAG ¢ 44|

o FINITE TRANSDUCER SIZE /y(x) dx

o ANGLE DEPENDENT TORQUE T=T (1-eq)
e NON LINEAR TORQUE T-co’

e NON LINEAR DAMPING Teeb

o ADDITIONAL MASS/STIFFNESS o(x) /El (x)

OPEN-LOOP PERTURBATION ANALYSIS
i+ oq = eflgd)

Figure 4
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CONTROL~LAW DESIGN

For the initial studies into the problem of vibration control, optimal control theory
was used to produce estimators and control laws. All results were obtained using
discrete time design techniques.

LINEAR QUADRATIC ESTIMATOR AND REGULATOR
X(k+1) = ® x(k) + G u(k} + T wi(k)

z(k) = H x(k) + v(k)

CONTROL MIN 3 x' Ax + u'Bu 5.t. x(k+1) = &x (k) + Gu(k)
T —1 T -]. ~ - ~

ESTIMATOR MIND w' Q 'w +v' R v s.t. X(k+1) = &% (k) + Gu(k)

RESULTS (DOPTSYS) u=Cg

X «— &% + Gu + K (z - HX)

Figure 5
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MICROPROCESSOR IMPLEMENTATION

Software for a 6502 microprocessor was developed to implement any linear, time
invariant estimator and controller, and was placed into 1K of ROM. 1K of RAM

is used to store the particular control system matrices and the scratch space
for the ROM software. The software samples the sensor vector, updates the state-
vector estimate, and outputs the control vector. The loop time is dependent on
the dimensions of these vectors with a six-state controller using 1 sensor and

1 actuator requiring 50 msec per update. Twelve-bit resolution is retained in
the D/A and A/D processes, while sixteen bits are used for internal computation.
Fixed-point double-precision arithmetic is performed entirely in software.

u=Cc%
X<+ X +K z ® =& + GC - KH

CONTROLLER FLOWCHART

BITS

12 — SAMPLE SENSORS p A-D's
16 FORM K z nxp X

16 FORM & X nxn X

16 FORM &X + K z n +

16 FORM u = C X nxm X

12 OUTPUT u m D-A's
|

FIXED POINT MULTIPLY

MATRIX MULTIPLY

D-A HARDWARE

A-D SOFTWARE

LOOP TIME T FROM OPERATION COUNT

Figuyre 6
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RESULTS

These preliminary results show the free end response of the beam to various inputs.
The open-loop initial condition (IC) and impulse responses are shown. Next, low-
gain closed~loop responses to both of the above inputs are shown. The controller
in this case consists of a single-position sensor and a single-force actuator at
the free end. Using a six—state controller, about 40 percent of critical damping
is achieved. The small residual is at the frequency of the first unmodeled mode.
By decreasing the cost of control in order to obtain improved performance, the
first unmodeled mode is destabilized.

Shape control, distributed control, and refining of the parameters describing the
beam facility are all activities planned for the future.

IC IMPULSE

OPEN-LOOP
TIP RESPONSE

CLOSED-LOOP
TIP RESPONSE
(LOW GAIN)

CLOSED-LOOP

TIP RESPONSE: N
(HIGH GAIN)

Figure 7
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New York, New York

Workshop on the Structural Dynamics and Control
of Large Space Structures
October 30-31, 1980
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BASIC ELEMENTS

Parameter Identification Subsystem -

Provides "local" estimate of system model parameters at a specific operating condi=
tion.

Techniques that have been used:

Newton-Raphson parameter identification
Output-error parameter identification

Parameter Extrapolation (Learning) and Memory Subsystem -

Provides "local" extrapolation of gystem parameters as a function of measured con-
figuration variables.

Technique that has been used:

Least-squares fit of functional model relating model parameters to configuration
variables.

Controller -

Uses functional model stored in Memory Subsystem to generate control forces.

PARAMETER ADAPTIVE CONTROL SYSTEM

Y

* ACTUATORS VEHICLE SENSORS

ZERO CONTROL
ORDER PROCESS ><;
HOLD | SUBSYSTEM
1
PARAMETER
MEMORY
| !
LEARNING
ALGORITHM
1
PARAMETER
IDENTIFICATION
SUBSYSTEM

A

Y

1

Figure 1
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APPLICATION OF ADAPTIVE/LEARNING

APPROACH TO DISTRIBUTED SYSTEMS

SNSTEM
PARAMETER

-
PHYSICAL
4 t t L conrrsurATION
Test 4 Teste TESTS VARIABLE

——  EXTRAPOLATION BASED ON
EXPERIMENTAL TESTS

ACTUuAL PARAMETER VARIATION

Figure 2

FEATURES OF ADAPTIVE/LEARNING APPROACH

- Approach combines advantages of a priori modeling and gain scheduling with those of

on-line identification and adaptive gain computation.

- Convergence criteria may be used to monitor performance of parametér-identification

and parameter-extrapolation subsystems.
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APPLICATION OF ADAPTIVE/LEARNING CONTROL TO
DISTRIBUTED SYSTEMS - PARAMETER IDENTIFICATION

Response Representation -

NM

yix,t,8) = 1231 £, (x,L)w, (£,p;(2))

spatial approximation function

modal amplitude approximation

i parameter vector in difference equation model for the evolution of w,

- configuration variable

= K5 ¥
1

Model Parameter Identification -
Adjust pi to obtain best fit of model data to sensor data.

wi(k) = Aliwi(k - 1) + A

P; = [Ali’AZi’Bli'Bzi]
Fi - force command input

w.(k - 2) +B,.F.(k - 1) + B, .F,(k - 2)
1l 1 1 1 1 1

2 1 2

Approximation Function Tuning -

NB
. L) = C.. o, (x,2
£.(x,0) = 2, €0 (x,2)
k=1
Oik(x,z) - a set of basis functions
Cik - response model spatial function tuning coefficients
STRUCTURE OF CURRENT IDENTIFICATION PROGRAM
Actual mode shape information
for calculating Hj
I
| ' [
MEASUREMENT } MODAL AMPLITUDE PARAMETER
SYSTEM : ESTIMATOR ~ IDENTIFIER A
y_ (k) w (k) i<}
m, -
!
Simulated Model ! Simulated Flight Computer
Amplitude
NS
y (k) = 3 H.ow, (k) + v(k)
m =y 33
j._.
&(k) - vector of modal amplitude estimates v(k) - erroxr vector
é - vector of model parameters H, - matrix related to assumed

. tial functions
ym(k) - vector of displacement measurements spatia unctLo &
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SIMULATION STUDIES OF FLEXIBLE BEAM UNFORCED RESPONSE - SPATIAL VARIABLE PLOTS

Sensor location
1
B A A \_4¥K/b
\/ \Actuator location -1,

Pos., cm
Time = 0.0 0

Pos., cm
Time = 2.5

Pos., cm 0

Tine'=5.0 P ~ A
5 -1

Pos., cm
Time = 7.5

Pos., cm

Time = 10.0 o=t A T o 0

s - .

q 183 366
Beam long axis X3, cm
Figure 3
DEFLECTION OF Cinn
ACTUATORS, NO. -
1
2
3
4
-6l__
L | I | I I
0 2 4 6 8 10
TIME, SEC.

Figure 4



TIME HISTORY PLOTS, MODE 3

D N,

w 0 VA\JAV
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L | L

Ay O
-2l
lr——'-
-1

P
I
0

2 Y 6 8 10
TIME, SEC.
Figure 5

TIME HISTORY PLOTS, MODE 5

T
W O‘MWW(MWWWWMWMWWNMWM
S
or—
Al 0
-2f
-
Ay o
-1
I 1 | I I ]
0 2 4 6; 8 10
TIME, SEC.
Figure 6
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PROPOSED BEAM-EXPERIMENT EXTENSION TO TEST - VARIABLE-CONFIGURATION STRUCTURE

Variable-configuration experiment

r T
Variable attachment point~—
B

eam 21

I %

Configuration at test 1 -

nER)

4

Configuration at test 2

Figure 7
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PROBLEMS - FOR INVESTIGATION
Development of function tuning algorithm.
Development of test~initiation algorithm.
Evaluation of state-estimation and parameter-identification algorithms.
Development of véiiéble—configuration experiment.

Performance evaldﬁtion of closed-loop adaptive/learning control system.
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SOME EARLY EXPERIMENTS WITH NONCOLOCATED

CONTROLS OF FLEXIBLE SYSTEMS

R. H. Cannon, Jr.
Stanford University
Stanford, Ca

Workshop,bn th¢ Structural Dynamics and Control
of Large Space Structures
October 30-31, 1980
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OBJECTIVES FOR EXPERIMENTAL FACILITY
1. Very low structural damping, ¢ < 0.001
2. Noncolocated sensors/actuators

3. Changing (and uncertain) inertias

SKETCH OF TORQUER/ENCODER MECHANISM

,-"7///////// 7777777777

ENCOHDLD

Figure 1
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TRANSFER FUNCTIONS 1\%

Figure 3
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NONCOLOCATED CONTROL

™ "

\lo
\o

") -

PLANT

1 .
o2 (s2 + 3.2871) (s + 1.69) (s '+ .361)

o
M.

COMPENSATOR -

M _ 16.083(s2 +. .0389s + 1.729) (s® - .01265 + 3.285) (s> + .0674s + .2919) (s + .1186)
6 (s2 + .2397s + 3.7166) (s - .24708 + 2.0416) (a° +1.6966s + 2.9345) (s% + 2.8478s + 2.3227)

Figure 4
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NONCOLOCATED CONTROL WITH APPENDAGE
|
x/j \

——— %

o
_ 2
ML = 4
1
> 9
PLANT
e _ (s +1/3)
M 82(s® +3.287)(s% + 1.69) (8% + .361)
COMPENSATOR
n (2.8744) (s + .303s + 3.018) (s® - .04968 + 2.297) (s> - .01453s + .35719) (s + .148)
6 (8% + .3458 + 3.460) (s> + .724s + 2.468) (s> + .0068 + .334) (s> + 1.989s + 1,369)

Figure 5
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REVIEW OF AD HOC COMMITTEE REPORT

ON TECHNOLOGY OF LARGE SPACE STRUCTURES

H. Ashley
Stanford University
Stanford, CA

Workshop on the Structural Dynamics and Control
of Large Space Structures
October 30-31, 1980
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STATEMENT OF TASK

At NASA's request, the Aeronautics and Space Englneerlng Board established an
ad hoc committee to address the following tasks:

1. Evaluate and provide comments and recomendations on the objectives, ap-
proach, content, and technical balance of NASA's Large Space Systems Tech-
nology Program plan.

2. Review and recommend means to-assurée an effective exchange of information

on technological developments in the’ area of large space systems between
and among NASA, its contractors, and user industries and agencies.

NASA MISSIONS INVOLVING LARGE SPACE SYSTEMS

80 84 84 86 86 90 90 2000
SMALL
MEDIUM GEO PLATFORM SETI

SMALL PLATFORM
PLATFORM (MID-LATITUDE) SPACE SCIENCE RECEIVING

SCIENCE (MID-LATITUDE) —  ~ LABORATORY LABORATORY
T SMALL VLB
PLATFORM e
(POLAR) GRAVITY WAVE/
— PINHOLE SATELLITE
SMALL PLATFORM CRYO TELESCOPE
GLOBAL — GLOBAL SERVICES
INFORMATION PLATFORMS
NARROWBAND ODSRS
COMMUNICATIONS TECHNOLOGY ANTENNA NARROWBAND —
COMMUNT CATIONS
SATELLITE
T GEOSTATIONARY
PLATFORM
ENGINEERING SPACE FABRICATION _ SPACE CONSTRUCTION
SUPPORT RERECTION TEST PLATFORM
, FLIGHT
Figure 1
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TRIANGULAR STRONGBACK-MEDIUM PLATFORM. .

-4 PANEL
MODULAR
RADIATOR

4 BLANKET. ARRAY
MEDIUM- POWER LEVEL -

> 14 PALLET/PAYLOAD
INTERFACES

Figure 2

MEASUREMENT OF SURFACE FIGURE, LARGE DEPLOYABLE MESH ANTENNA

TARGET POINTS

MEASUREMENT: SURFACE DEFORMATION
o, NORMAL TO "IDEAL" SURFACE

b, PERIPHERIAL TWIST COVERAGE

SENSOR RING

Figure 3
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GENERAL CONCLUSIONS AND RECOMENDATIONS

1SS missions furnish solid justification for continuation of LSST program.
"Current Plan" inadequate for fulfilment of needs during next 5 years.

LSS program should be integrated, With'designated Headquartersvoffices as over-
all director. o

Prioritization of mission model essential to focus théktechnology program.
Flight experiments during next'5 years essential to focus TLSS program.
"Roadmaps" needed’fbrﬁtechndloqical developmént:_

a) Total system and

b) Local for each technology discipline.

Study sensitivity of system performance to relaxedlfgquirements on technology.

Large platform with several experiments a particularly imaginative concept;
further study needed. Can products of different users be combined ?

Man at GEO needs to be vigorously examined. Committee not convinced benefits
will outweigh costs.

Transfer of technology and coordination of work with other agencies (notably
DOD) quite adequate and improving.



10.

11,

12,

13.

14.

TECHNOLOGICAL CONCLUSIONS AND RECOMMENDATIONS

Relnforce certain areas 'in TLSS 5-year plan?

a) Figure determination and control

b) EM interference

¢) Automated vs. manual assembly

d) Docking

e) Rel., repair, and maintain

Comparative evaluation of altrnatives required.

Definition of orbital transfer vehicles lacking. Electric propu151on should be
pursued, but capability in chemical should be preserved. :

LSST plan tends to emphas1ze structures more than certain other vital areas.
JPL study of ODSRS should be ‘evaluated; con51dered a rather unllkely candidate.

SEP has a smgnlflcant role for orbltal transfer, statlon keeplng, and planetary
missions. ~ : -

More’ attentlon needed to locations and systems ‘for data proces31ng. Needs a
SLgnlflcant start.

Traffic models must be bettef'developedﬂto define future COMSATS.
Efforts applauded on low-cost ground stations. Success key is a large market.
Current program reasonable relative to large—platform COMSATS at GEO.

In structures and materials, emphasize optimization, loads determination, dy-
namics, damping, integrated design, and special materials for space.

Activity on deployment, assembly, and fabrication is effective. Time for eval-
uation of alternative approaches.

Technology of active figure sensing and control needs ‘greater attention.

LSS human factors program endorsed, but specific line item should be added
within LSST budget.
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ORBITING VLBI

ORBITING VLBI: HIGH RESOLUTION
MAPS OF CELESTIAL RADIO SOURCES

Figure 4

PINHOLE SATELLITE SYSTEM

FLARING REGION

POSITION THAUSTERS

PINHOLE ARRAY

X AND v RAY
DETECTOR ARRAY

CORONAGRAPH —___ \
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ATTITUDE CONTROL. OF A FLEXIBLE

. TRIANGULAR TRUSS- IN SPACE

Bong Wie.and Arthur E. Bryson, Jr.
Department of Aeronautics and Astronautics
Stanford University
Stanford, CA

Workshop. on the Structural Dynamics and Control
of Large Space Structures
October 30-31, 1980
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OBJECTIVES

Generic model of a planar space structure having infinite number degrees of freedom
(DOF) : 3 identical, simple beams joined with ball-~socket connectors.

Demonstrate roll, pitch, and yaw attitude stabilization using angle sensors and tor-
quers at the midpoints of all 3 beams.

Find exact transcendental transfer functions from torques to angles producing exact
poles and zeros. : ‘

Many identical natural frequencies in ¥oll and pitch cause no control problems.
Compare closed-loop predictions of truncated models to infinite DOF model.

. Compare finite-element approximate models with exact infinite-element model.

EXAMPLE TRIANGULAR TRUSS

© VECTOR POINTING UP OUT-OF-PLANE

R
Wi (4:Q,)
ROLL AXIS
a (63,Qq)
N

4, (Y37F£:)

6,Q) (6350,

FIGURE |. EQUILATERAL TRIANGULAR TRUSS WITH
ROLL CONTROL TORQUE Q

114



NOMENCLATURE AND UNITS

0 = mass/unit length of beams
EI = bending stiffness of beams
2% = length of beams

y = out—of—plane displacement

8 = out-of-plane slope

Q = in-place bending moment

F = out—of¥p1ane shear force

Zd s _9&% 2
BT °
s = Laplace transform variable
= o -9 r1"
EWeXr T 3
A A
Quantity I y |6 1 o} l F
) I
"Units l L l-l EEW B
. 2 22

TRANSFER MATRICES

From partial differential equation of simple, we can obtain T(A) such that:

xz(k) = T(X)xl(k)
8 egs.
x4(k) = T(2X)x3(A)‘
where .
Ty Ty T3 Ty
O e
T3 T, T Ty
T, 3T, T
T
1 = l-(cosh A+ cos A)
T 2
3
T
2 = 1"(sinh A X sin A)
T4 2

For roll motion:

(0 = -
0=y, =y,
8 0=9, =9 =9
boundary < V. =Y
e a 2 3.
conditions F =P
2 3
RN §
(21 7 7%

it
<
I

Definition {el &

‘= Roll angle

(antisymmetry)
(ball-socket joints)

~ (compatibility of displacements)
(transmission of shear force)

(antisymmetry)
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ROLL TRANSFER FUNCTION

Combining 8 boundary conditidns with 8 equations of two transfer matrices gives

¢ (s)/Qp(s) = _ o

¢(s)v; EIXZ-N(S)
QR(S) S2 ‘D(sl

(dimensional)

where N(s) = 4(cosh 2\ sin 2\ - sinh 2 cos 2)) (cosh A sin A - sinh A cos 2)
~-% sinh 2X sin 2A(l-+ cosh X cos A)

D(s) = (cosh 21 sin 2\ - sinh 2\ cos 21) (sinh.} sin A + sinh 2) sin 21)
+‘sinh 2)\‘sin 2A(cosh A sin A - sinh X cos A)

We may now write: o

2 2
¢ (s) 1 o> s /Zn i mene
= : R (dimensional)

QR(S) AJS; n=1 1 + s2/wIi

where 3
J = 208

Il

Roll moment inertia of rigid truss

Using a root solver code, we can find exact poles and zeros (wn,Z‘ ) “from tran-
scendental transfer function above. First 6 deformation modes and rigid-body mode are
shown in figure 2. Zeros are for colocated angle sensor. (Note that poles and zeros -

alternate !) .
pIa et

X 47.012

—3

0 41.322
x 39.478

o ZERO
x POLE

.08
25.249

YO
X
N
S

799

X-O—X— O
©
@
o

3
10.846
9.869

3.747

3.162

1.586
—

—$-oxo

FIGURE 2. POLE-ZERO DISTRIBUTION OF
ROLL TRANSFER FUNCTION _8%
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' 'ROLL~-MODE SHAPES
From the partial differential equation of the simple beam,
y(n) = y,T; () + 6,T,(n) - QT4 (An) + F T, (An) (Beam I, 0 < n < 1)
y(€) = -y, T, (AE) - 6,7, (AE) + QT (AE) - F,T,(AE)  (Beam II, O < £ < 1)
For antisymmetric roll motion, yl = y4 = Ql = Q4 = 0. For each wn yielding An’
find 6., 6 F from transfer matrices ("eigenvector") derived from mode

1 4’ 1’ 4
shapes from above. The first 6 mode shapes are shown in figure 3.

F

ROLL-RATE STABILIZATION

Colocate roll-rate sensor with roll torquer. >Use simple proportional feedback
QR = -KJ). Figure 4 is part of the infinife-dimensional root locus vs. K. All modes
are stabilized: Only 2 deformation modes are significant. lﬂig}lre 5 is the root locus
vs. K for the truncated model including only the 2 significant deformation modes.
Figure 6 shows the 6th order model in more detail.

RIGID-BODY
ROLL MODE

- FIGURE. 3., 'ROLL-MODE . SHAPES
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%J‘“ 1
_055.0
[ ]

-

[26

X

40.0

o

CLOSED-LOOP ,20.0
POLE AT K=1.0

FIGURE 4. EXACT INFINITE-DIMENSIONAL ROOT
LOCUS vs. K WITH RATE FEEDBACK Qg-K¢

5.0 R T3 o
d s
ot
p 24.249
8TH ORDER MODEL ODEL

'-10.0 T5To ﬁ\l‘? Y -

FIGURE 5-A. ROOT LOCI vs. K FOR REDUCED .
ORDER MODELS WITH RATE FEEDBACK Qg-K¢
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. 1+
o
‘ __e—xar.012
o/
/‘—"<39.47a‘ S G
4 S

G ¢
<“,?; (j;’
-50 - E(",_— ~50 E:’:—"
12TH ORDER MODEL 14TH ORDER MODEL

FIGURE 5-8. 'ROOT LOGI vs. K FOR REDUCED _
ORDER MODELS WITH RATE FEEDBACK Qz-K¢$

a4
JUET

/_<__.__J 47.012

-C’!ls'.lu
Nk 13.799

3 1.586

50 N
|
FIGURE 6. ROOT LOCUS vs. K FOR 6TH ORDER
MODEL WITH RATE FEEDBACK QK¢
_(MODES 1,2,4,5 ARE NEGLECTED)
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ROLL-~ATTITUDE STABILIZATION

Colocate roll-angle sensor with roll torquer. Use lead compensation
v s>+ 1
= =K ———
% s + 10 ¢(s)
Figure 7 is the root locus vs. K for the infinite-dimensional model.

PITCH CONTROL

Figure 8 shows the free-body diagram for analyzing pitch motions using 2 torquers
and QP . Using the same method, we found the exact transfer function G(S)/QP(S).
1 2
The first few poles and zeros are shown in figure 9 for colocated sensors and torquers.
Note the pole/zero cancellation plunge modes. The first few mode shapes are shown in
figure 10. Some, but not all, frequencies are identical to the roll frequencies.
Sensors do not pick up roll motions so there is no roll-pitch coupling.

%

piafeE
ufe

?55.0

v/"‘"\

£ 40.0

20.0

CLOSE
POLES

O

27 3
e+ D

~
xO

>

2Q>¢b————%6

Zl0.0 -0 '
FIGURE 7. EXACT INFI'N[TE'-[%IMENSIONAL ROOT
LOCUS vs. K WITH LEAD COMPENSATION
Q= K $+1.0 ¢
R S+1 0.0

120



(e| ’ O.|) (62’_@2)

FIGURE 8. EQUILATERAL TRIANGULAR TRUSS WITH
TWO IDENTICAL PITCH CONTROL TORQUES QPTQ

el

2

R

X47.012

Tso.zas ( PLUNGE)
. 692
252825

018.839

x13.799

.593 ( PLUNGE)
212

.162
.826
—

- w o

—%¥-oxo%

FIGURE 9. POLE-ZERO D\IST(R)IBUTION OF PITCH.
TRANSFER FUNCTION [on: (6% 7 (65+65))
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RIGID PITCH RIGID PLUNGE

+

FIGURE 10. PITCH/PLUNGE MODE SHAPES
(SYMMETRIC ABOUT ROLL AXIS)
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YAW CONTROL

Figure 11 shows the free-body diagram for analyzing yaw motions by using 3 tor-
quers (at beam midpoints). We must now include the axial deformation of the beams

since bending is in-plane. The values (x G ) are the axial displacements and axial
forces at the points indicated.

Using the same methods, we found the first few exact poles and zeros for co-

located sensors/torquers, shown in figure 12 for 3 different beam-slenderness ratios.
The first few mode shapes are shown in figure 13.

® VECTOR POINTING DOWN OUT-OF-PLANE
® VECTOR POINTING UP OUT-OF-PLANE

WA

(6y,.Q,) @,
54 Yz & F) ()

I
A @ B O——O *¥h,G)y—=>O0— —(X2,~G,)
(6"1' QI) (6 ,Q| (92 ’ QQ)

FIGURE I1. EQUILATERAL TRIANGULAR TRUSS WITH
THREE IDENTICAL YAW CONTROL TORQUES
a |
Q= Qys QY3= &
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%J%E? | %JQE? *JwE?
. T

0180.949
. - 0177.142 P173.556
168.775
}160.575 £ 157.875
0145.43]
143333
0122.929
X116. 545
) 0108.35!
106.837 0105.880 100,425
x 91.385 0.
90724 0 83.045
80.843
062.158
% 56.508
0 52.401 Tsz.m b 48,197
1
41.850 X 41.739. 43. 14l
O 26,643
. aE R 24152
6 17.423 17409 15.505
i<|l.808 11.803 11,133
2.290 2.290 2.278
—xX — —*2|<
I .
= oo R=100 R=10

FIGURE 12. POLE-ZERO DISTRIBUTIONS OF
YAW TRANSFER FUNCTION XS]
( RESLENDERNESS RATIO=%, ¥ Hata e )

%%

FIGURE 13. YAW MODE SHAPES WITH 8= Oy,= 8y,
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CONCLUSIONS

Exact infinite degree-of-freedom transfer functions can be found for truss/frame
space structures using simple beam "transfer matrices".

By using symmetries, we can omit unexcitable modes in numerator/denominator,
saving computation time.

Proper location of sensors and actuators avoids feedback-coupling of naturally un-
coupled modes at the same resonant frequency.

Transfer function zeros (which depend on mode shapes) are found more accurately by
this method than by the usual "finite-element" codes.
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LARGE MOTIONS OF DEFORMABLE SPACECRAFT

T. R. Kane
Stanford University
Stanford, CA

Workshop on the Structural Dynamics and Control
of Large Space Structures
October 30-31, 1980

127




CONSIDERATIONS FOR DYNAMIC SIMULATION
OF LARGE SPACE STRUCTURES

- Large attitude changes
~ Small deformations

- Arbitrary initial conditions

STRUCTURAL DYNAMIC ISSUES IN LARGE SPACE STRUCTURES

- Lump masses at nodes ?
-~ Treat members as linear springs °?

- Formulate the differential equations governing the coordinates of the nodal parti-
cles ?

- Solve the differential equations ?

N nodes (N very large)
3N second-order differential equation
6N third-order differential equation

The fact that only small deformations are of interest is not exploited.

- Small motions can be described in terms of principal modes - and only a few modes
suffice. Can one use the same approach to describe large motions ? (See fig. 1.)

B
W;

Figure 1
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SIMULATION CONFIGURATION

T A, X!’S’ x,,‘ X% Y
)
73);4‘

Figure 2

Configuration Variables

xl,..., X,

or

7z

yl,..., y6

Modal Coordinates

Qyreeer 9
i+ 1
vy, = x, + A, g
3 J k=1 Jk’k
Generalized Speeds
. P P

ul=el u2=!§l' u3=122' u3+k=q k=1,..., v)
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EQUATIONS OF MOTION

Kinematical
0 = uy
él = u, cos 8 - u, sin 0
éz =, sin 6 + u, cos 8
ék = u3+k (k =1,..., V)
Dynamical
v 3
T4y - wyl, +wyay + B PN mi(yzi—lAzij - y2iA2i—j)ﬁ3+j

1=1
3 _ 3
= igl (Q);_q ~mydyp Wyl + miy = & (Q); = m3;5)
' 3
Eéa mi(YziAzi-k;‘ y2i—lA2ik)al - ﬁ3+k = —Gk + Aqu + A mi(A2i—kai + Azikéiz)

Initial Conditions
Given: xl(O), x2(O), x3(0); xl(O), x2(0), x3(0)

Needed: zl(O), 22(0), 8(0), ul(O), u2(0), u3(0); qk(O), u (0) (k =1,..., V)

3+k

6 + 2v unknowns

Equations: v

2, (0) = x,.(0)8(0) + kz)l By 48 (0) = %, 1(0) = x,. o

V ~
2,(0) + x,.(0)0(0) + 5 A . q (0) = x,,(0) - x .

k=1

-

-y, (0u; (0) + u (0) + ]{2:21 By, 8y, (0) =%, L (0) = %,.(0)6(0)
~v,. 1 (0)u (0) + u_(0) + E By Ug,, (0) = = . (0)0(0) + k. (0)

k=1

12 equations

If v < 3, the number of equations is greater than the number of unknowns.
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SIMULATION RESULTS

5000 N

90+ ¢
\ ' > 4LLOOON

‘5000 N

Figure 3

4500

8¢
(o/ej):

& .09

p) csrerpeem 03 r—— y
f(fec)

Figure 4 (¢ = exact; $-= linear solution)
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